沈奇笑了,非常开心,天无绝人之路。
上次田老师救了他,这次张老师救了他。
其实沈奇最该感谢的是他自己,在困境中他从未选择放弃,数学很多时候需要执着甚至疯魔,他和他最后的倔强救了他。
当年装逼用的凯莱转折矩阵以及矩阵论,终于在最关键的时刻发挥作用。
不管这个数字列阵是什么妖魔鬼怪、是不是群,都逃不过我沈奇手中的照妖镜---矩阵。
能领悟或者翻译群论的工具,是矩阵。
根据题面数字列阵:
1=1
196884=196883+1
21493760=21296876+196883+1
864299970=842609326+21296876+2*196883+2*1
……
沈奇写出一个矩阵同态:
A=A*A
将其展开为矩阵表达:
|Ag-0|
|Ai-0|
|0-Aj|
……
这种矩阵语言看上去很复杂,但表达的意思非常简单直接,即一个群G的矩阵表示,是G的元素g到一组固定阶的非奇异方阵A的一个同态映射。
再说简单一点,群是非常难搞懂的一组复杂密码,而矩阵是破译密码的母本之一。
唯一的要求是,你必须熟练各种解码手段,越多越好。
如果能用矩阵描述这个数字列阵,说明它是某种群,否则不是。
当沈奇用正则置换方式表达出这个数字列阵后,他十分惊讶:“MMP……Monster-Group……居然还真是个妖魔鬼怪,魔群!”
魔群是啥玩意?
即最大的散在单群。
相比于其他群,魔群的年纪非常年轻,也就四十年左右。
这个群相当恐怖,所以被数学家命名为Monster-Group。
一般人是难以玩转魔群的,玩着玩着就把自己玩疯了,玩坏了。
英国数学家博切尔兹对魔群理论做出了重大贡献,他证明了“魔群月光猜想”,一个看名字就很魔幻很牛逼的存在。博切尔兹因此巨大成就获得菲尔兹奖。
魔群,想要玩转它,入门水平至少都需要数学系博士。
这种题目为何会出现在IMO的考卷上?
世界上有中学生能搞定它?
当然没有。
也不需要搞定它。
沈奇的理解是,对于这个魔群,给出两种形式不同的数学解释就OK了。
破解魔群和描述魔群是两码事。
没人可以破解哥德巴赫猜想,但不少人可以描述哥德巴赫猜想:任一大于2的偶数皆可写成两个素数之和。
();() 与其类似,沈奇要做的是后者,但不能用文字,而是用纯粹的数学语言描述。